

Published on Web 11/25/2009

First Observation of Phase Transformation of All Four Fe₂O₃ Phases ($\gamma \rightarrow \varepsilon \rightarrow \beta \rightarrow \alpha$ -Phase)

Shunsuke Sakurai,^{†,‡} Asuka Namai,[†] Kazuhito Hashimoto,[‡] and Shin-ichi Ohkoshi^{*,†}

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received June 6, 2009; E-mail: ohkoshi@chem.s.u-tokyo.ac.jp

Abstract: Iron oxide (Fe₂O₃) has four crystal structures: γ -, ε -, β -, and α -Fe₂O₃. Until now, routes of the phase transformations among the four Fe₂O₃ phases have not been clarified because a systematic synthesis that yields all four Fe₂O₃ phases has yet to be reported. Herein we report the synthesis of a series of Fe₂O₃ nanoparticles using mesoporous SiO₂. The crystal structures of the Fe₂O₃ nanoparticles change in the order of γ -Fe₂O₃ $\rightarrow \varepsilon$ -Fe₂O₃ $\rightarrow \beta$ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ as the particle size increases. Threshold sizes were estimated as $\gamma \rightarrow \varepsilon$ at 8 nm, $\varepsilon \rightarrow \beta$ at 30 nm, and $\beta \rightarrow \alpha$ at 50 nm in the synthesis using FeSO₄ as a precursor. The phase transformations among the four Fe₂O₃ phases have been observed for the first time.

Introduction

Iron oxide (Fe₂O₃) has four crystal structures: γ -, ε -, β -, and α -Fe₂O₃.^{1,2} The γ - and α -Fe₂O₃ phases have been well-studied and extensively applied in industry as magnetic (γ -Fe₂O₃) and red-dye (α -Fe₂O₃) materials.³⁻⁹ In recent years, ε - and β -Fe₂O₃, which are rare phases, have also drawn attention. In particular, ε -Fe₂O₃ has received attention from the industrial point of view because of its large coercive field.¹⁰⁻¹⁵ The crystal structures and magnetic properties of these four phases are the following: γ -Fe₂O₃ has a spinel structure (space group $Fd\bar{3}m$) and shows

- * Department of Applied Chemistry, School of Engineering.
- (1) Zboril, R.; Mashlan, M.; Petridis, D. Chem. Mater. 2002, 14, 969.
- (2) Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; Wiley-VCH: Weinheim, Germany, 2003.
- (3) Dronskowski, R. Adv. Funct. Mater. 2001, 11, 27.
- (4) Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. Nature 2002, 420, 395.
- (5) Odenbach, S. Magnetoviscous Effects in Ferrofluids; Springer: Berlin, 2002.
- (6) Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J. Nat. Med. 2007, 13, 95.
- (7) Wang, Y.; Davis, B. H. Appl. Catal., A 1999, 180, 277.
- (8) Buxbaum, G.; Pfaff, G. Industrial Inorganic Pigments; Wiley-VCH: Weinheim, Germany, 2005.
- (9) Bomatí-Miguel, O.; Mazeina, L.; Navrotsky, A.; Veintemillas-Verdaguer, S. Chem. Mater. 2008, 20, 591.
- (10) Jin, J.; Ohkoshi, S.; Hashimoto, K. Adv. Mater. 2004, 16, 48.
- (11) Sakurai, S.; Jin, J.; Hashimoto, K.; Ohkoshi, S. J. Phys. Soc. Jpn. **2005**, 74, 1946.
- (12) Ohkoshi, S.; Sakurai, S.; Jin, J.; Hashimoto, K. J. Appl. Phys. 2005, 97, 10K312.
- (13) Tronc, E.; Chanéac, C.; Jolivet, J. P. J. Solid State Chem. 1998, 139, 93.
- (14) Kurmoo, M.; Rehspringer, J.; Hutlova, A.; D'Orleans, C.; Vilminot, S.; Estournes, C.; Niznansky, D. *Chem. Mater.* **2005**, *17*, 1106.
- (15) Gich, M.; Frontera, C.; Roig, A.; Taboada, E.; Molins, E.; Rechenberg, H. R.; Ardisson, J. D.; Macedo, W. A. A.; Ritter, C.; Hardy, V.; Sort, J.; Skumryev, V.; Nogués, J. *Chem. Mater.* **2006**, *18*, 3889.

ferrimagnetism with a Curie temperature $(T_{\rm C})$ of 928 K.^{1,2,16,17} ε -Fe₂O₃ has an orthorhombic structure (*Pna*2₁) and exhibits a ferrimagnetic feature $(T_{\rm C} = 495 \text{ K})$.^{10–15} β -Fe₂O₃ has a bixbyite structure $(Ia\bar{3})$ and displays antiferromagnetism with a Néel temperature (T_N) of 119 K.¹⁸⁻²⁰ α -Fe₂O₃ has a corundum structure $(R3\bar{c})$ and shows a weak ferromagnetic property due to the Dzyaloshinsky–Moriya mechanism ($T_{\rm C} = 950$ K).^{21–23} From a nanomagnetic viewpoint, γ -Fe₂O₃ nanoparticles have been prepared by methods such as sol-gel techniques and electrochemical techniques.^{24–26} ε -Fe₂O₃ nanoparticles have been synthesized by combining the sol-gel and reverse-micelle methods¹⁰⁻¹² or the sol-gel method.¹³⁻¹⁵ β -Fe₂O₃ nanoparticles have been obtained by a chemical vapor condensation method.^{27,28} Compared with γ - and α -Fe₂O₃, information about ε - and β -Fe₂O₃ is scarce. Hence, the relationship among these four phases is not so clear. To date, the phase transformations $\gamma \rightarrow \gamma$ $\varepsilon \rightarrow \alpha^{29,30}$ and $\beta \rightarrow \alpha^{18-20}$ (depending on temperature or particle

- (16) Özdemir, O. Phys. Earth Planet. Inter. 1990, 65, 125.
- (17) Chikazumi, S. *Physics of Ferromagnetism*; Oxford University Press: New York, 1997.
- (18) Ben-Dor, L.; Fischbein, E.; Felner, I.; Kalman, Z. J. Electrochem. Soc. 1977, 124, 451.
- (19) Ikeda, Y.; Takano, M.; Bando, Y. Bull. Inst. Chem. Res., Kyoto Univ. 1986, 64, 249.
- (20) Zboril, R.; Mashlan, M.; Krausova, D.; Pikal, P. *Hyperfine Interact.* 1999, 120/121, 497.
- (21) Néel, L. Ann. Phys. 1949, 4, 249.
- (22) Dzyaloshinsky, I. J. Phys. Chem. Solids 1958, 4, 241.
- (23) Moriya, T. Phys. Rev. 1960, 120, 91.
- (24) Willard, M. A.; Kurihara, L. K.; Carpenter, E. E.; Calvin, S.; Harris, V. G. Int. Mater. Rev. 2004, 49, 125.
- (25) Jolivet, J. P.; Tronc, E.; Chanéac, C. Eur. Phys. J. Appl. Phys. 2000, 10, 167.
- (26) Pascal, C.; Pascal, J. L.; Favier, F.; Moubtassim, M. L. E.; Payen, C. Chem. Mater. 1999, 11, 141.
- (27) Lee, J. S.; Im, S. S.; Lee, C. W.; Yu, J. H.; Choa, Y. H.; Oh, S. T. J. Nanoparticle Res. 2004, 6, 627.
- (28) Lee, C. W.; Jung, S. S.; Lee, J. S. Mater. Lett. 2008, 62, 561.
- (29) Jolivet, J. P.; Tronc, W.; Chanéac, C. C. R. *Geoscience* 2006, 338, 488.

[†] Department of Chemistry, School of Science.

Figure 1. (a) Schematic representation of the impregnation method using mesoporous SiO_2 . (b) TEM images of 1-900, 1-1100, 1-1200, and 1-1250 after NaOH(aq) etching.

size) have been reported, while the following points are ambiguous: (I) Are the four phases transformed sequentially or not ? (II) If they have a sequential relationship, what is the order ? From these angles, the following sequences can possibly be considered: (i) $\gamma \rightarrow \varepsilon \rightarrow \alpha \leftarrow \beta$; (ii) $\gamma \rightarrow \beta \rightarrow \varepsilon \rightarrow \alpha$; (iii) $\beta \rightarrow \gamma \rightarrow \varepsilon \rightarrow \alpha$; and (iv) $\gamma \rightarrow \varepsilon \rightarrow \beta \rightarrow \alpha$. In the present work, we used an impregnation method with mesoporous SiO₂ to synthesize a series of Fe₂O₃ nanoparticles. With this process, we for the first time have obtained the four phases with one synthesis procedure and observed the successive sequence of the process (iv).

Experimental Section

Materials. Fe₂O₃ nanoparticles were synthesized by impregnation of an Fe compound [FeSO₄ or Fe(C₁₀H₉CHO)] into mesoporous SiO₂ particles followed by heating and etching of SiO₂ (Figure 1a). Mesoporous SiO₂ nanoparticles were synthesized using the method reported by Möller et al.³¹ Si(C₂H₅O)₄ (62 mmol) was added to a solution composed of H₂O (4 mol), C₂H₅OH (0.18 mol), C₁₆H₃₃N(CH₃)₃Cl (16 mmol), and N(CH₂CH₂OH)₃ (62 mmol) at 60 °C and stirred for 2 h. Mesoporous SiO₂ nanoparticles were obtained after centrifuging and heating at 600 °C in air.

Synthesis Using FeSO₄. The first series of Fe₂O₃ nanoparticles (1) was synthesized as follows. Mesoporous SiO₂ nanoparticles were immersed in a mixed solution of CH₃OH and H₂O containing FeSO₄ by grinding in an agate mortar and drying at 60 °C under a vacuum. The Fe/Si molar ratio was 0.08. Next, Fe₂O₃ nanoparticles embedded in a SiO₂ matrix were obtained upon heating. The as-dried materials were heated in air to 900–1250 °C at a rate of 4 °C/min. They were kept at the same temperature for 4 h and then cooled to room temperature at a rate of 5 °C/min. Finally, a series of Fe₂O₃ nanoparticle samples was obtained after etching of the SiO₂ with a 5 mol dm⁻³ NaOH aqueous solution for 24 h at 60 °C. Hereafter, these samples are called 1-*X*, where *X* represents the calcination temperature.

Synthesis Using $Fe(C_{10}H_9CHO)$. The second series of Fe_2O_3 nanoparticles (2) was synthesized as follows. Mesoporous SiO₂ nanoparticles were immersed in a mixed solution of CH₃OH and furfuryl alcohol (C₃H₆O₂) containing ferrocenecarbaldehyde [Fe(C₁₀H₉CHO)] by grinding in an agate mortar. The Fe/Si molar ratio was 0.11. Next, the Fe₂O₃ nanoparticles embedded in a SiO₂ matrix were obtained upon heating to 1000–1300 °C for 4 h. Hereafter, these samples are called 2-*X*.

Characterization. The transmission electron microscopy (TEM) images were measured with a JEOL JEM 2000EXII transmission electron microscope. The crystal structures of the obtained materials were characterized by X-ray diffraction (XRD) using a Rigaku RINT 2100 diffractometer. Rietveld analyses of the XRD patterns for all of the samples were conducted using the RIETAN-FP program.³² The magnetic properties were measured with a super-conducting quantum-interference device magnetometer (Quantum Design MPMS 7).

Results and Discussion

1-X Series. Figure 1b shows TEM images for the samples 1-900, 1-1100, 1-1200, and 1-1250. The TEM image of 1-900 shows spherical particles with an average size of 4 ± 1 nm. As the heating temperature was increased, the particles became larger: 19 ± 6 nm (1-1100), 34 ± 13 nm (1-1200), and 45 ± 18 nm (1-1250). TEM images of the other 1-X samples are shown in Figure S1 in the Supporting Information (SI). The small particle size of 1-900 can be explained by the size of the mesopores in SiO₂ (~3 nm).³¹ Below the glass transition temperature (T_g) of SiO₂ (~1000 °C),³³ SiO₂ prevents Fe₂O₃ nanoparticles from aggregating. In contrast, above T_g , the particle size grows by aggregation of Fe₂O₃ nanocrystals as a result of the softness of the SiO₂ matrix.

Figure 2a and Figure S2 in the SI show XRD patterns and Rietveld analyses of the samples. The **1-900** sample exhibited broad peaks, and the pattern is attributed to the γ -Fe₂O₃ phase. The broadened peaks are consistent with the small-sized γ -Fe₂O₃ nanoparticles. The pattern of **1-1100** showed diffraction peaks from the pure ε -Fe₂O₃ phase. The pattern of **1-1200** mainly consisted of the β -Fe₂O₃ phase (87%) but also contained ε -Fe₂O₃ (9%) and α -Fe₂O₃ (4%). The XRD pattern of **1-1250** consisted of the α -Fe₂O₃ (69%) and β -Fe₂O₃ (31%) phases. These results indicate that the crystal structures of Fe₂O₃ $\rightarrow \beta$ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ as the heating temperature and particle size increase (Figure 2b,c).

- (32) Izumi, F.; Momma, K. Solid State Phenom. 2007, 130, 15.
- (33) Sakka, S.; Mackenzie, J. D. J. Non-Cryst. Solids 1971, 6, 145.

⁽³⁰⁾ Sakurai, S.; Tomita, K.; Hashimoto, K.; Yashiro, H.; Ohkoshi, S. J. Phys. Chem. C 2008, 112, 20212.

⁽³¹⁾ Möller, K.; Kobler, J.; Bein, T. Adv. Funct. Mater. 2007, 17, 605.

Figure 2. (a) XRD patterns and Rietveld analyses for 1-900, 1-1100, 1-1200, and 1-1250. Miller indices correspond to the unit cells of γ -Fe₂O₃, ε -Fe₂O₃, β -Fe₂O₃, and α -Fe₂O₃, respectively. (b) The contents of four Fe₂O₃ phases evaluated by Rietveld analyses. (c) Graphical representations of the crystal structures of γ -Fe₂O₃, ε -Fe₂O₃, β -Fe₂O₃, and α -Fe₂O₃, ε -Fe₂O₃, ε -Fe₂O₃, ε -Fe₂O₃, β -Fe₂O₃, and α -Fe₂O₃. The colored spheres at the centers of polyhedrons and white spheres on the edges represent the iron and oxygen atoms, respectively. (d) Magnetization-vs-temperature curves. Black lines were measured with cooling, except for the white circles for 1-900, which were measured with a warming process. The applied fields were 0.1 kOe for 1-900, 1 kOe for 1-1100, and 10 kOe for 1-1200 and 1-1250.

Figure 2d depicts the magnetization (*M*)-versus-temperature (*T*) curves. The γ -Fe₂O₃ sample **1-900** displayed superparamagnetism with a blocking temperature (*T*_B) of 62 K, which is likely due to the small size of the nanoparticles. The **1-1100** sample composed of ε -Fe₂O₃ showed spontaneous magnetization with *T*_C = 500 K, but the *M* value decreased below 153 and 102 K because of spin reorientation (*T*_p). The **1-1200** sample exhibited peaks in *M* at 151 and 119 K; the former of these corresponds to the spin reorientation of ε -Fe₂O₃ and the latter to the antiferromagnetic phase transition at *T*_N of β -Fe₂O₃. The *M* value of **1-1250** decreased below 257 K, which corresponds to the Morin transition (*T*_M) of α -Fe₂O₃.³⁵ The magnetization (*M*)-versus-external magnetic field (*H*) plots for these samples also reflect the crystal phases (Figure S3 in the SI).

The threshold sizes of the $\gamma \rightarrow \varepsilon$, $\varepsilon \rightarrow \beta$, and $\beta \rightarrow \alpha$ phase transformations can be estimated from the relationship between the existence ratio of each phase obtained from XRD and the size distribution obtained from TEM images. Since

(35) Morin, F. J. Phys. Rev. 1950, 78, 819.

the XRD data clearly showed the order to be $\gamma \rightarrow \varepsilon \rightarrow \beta \rightarrow \alpha$ with increasing particle size, the histogram of the particle size distribution is divided by the existence ratio of each phase, considering the volume of each particle size. For example, the existence ratio of ε -Fe₂O₃, $R(\varepsilon)$, is expressed as follows:

$$R(\varepsilon) = \frac{\displaystyle\sum_{d=d_{\gamma-\varepsilon}}^{a_{\varepsilon-\beta}} N(d) d^3}{\displaystyle\sum_{d=0}^{\infty} N(d) d^3}$$

where N(d) is the number of particles of size of d and $d_{\gamma \to \varepsilon}$ and $d_{\varepsilon \to \beta}$ are the size thresholds for the $\gamma \to \varepsilon$ and $\varepsilon \to \beta$ phase transformations, respectively. From this relation, the threshold sizes for the Fe₂O₃ phases were estimated to have the following values: $d_{\gamma \to \varepsilon} = 8$ nm, $d_{\varepsilon \to \beta} = 30$ nm, and $d_{\beta \to \alpha} = 50$ nm,³⁴ as shown in Figure 3.

2-*X* Series. We examined the synthesis using Fe(C₁₀H₉CHO) as a different precursor. Also in this case, the series of phase transformations $\gamma \rightarrow \varepsilon \rightarrow \beta \rightarrow \alpha$ -Fe₂O₃ was observed (Figure 4). The TEM image of 2-1000 showed spherical particles with an average size of 4 ± 1 nm (Figure S4 in the SI). As the heating temperature increased, the particles became larger:

⁽³⁴⁾ It is noted that these threshold sizes were only for the Fe_2O_3 nanoparticle synthesized in mesoporous silica. Such particle sizes depend on the circumstances, i.e., the interface energy depends on the materials.

Figure 3. Particle size distributions of Fe₂O₃ nanoparticles in the series of samples **1**. The colors of the bars indicate the corresponding estimated Fe₂O₃ crystal structures: γ , gray; ε , blue; β , red; α , green. The size range of each Fe₂O₃ phase in each sample was estimated from the existence ratio of each phase from the XRD analyses. Dotted lines indicate the threshold sizes for the phase transformations among the Fe₂O₃ phases.

Figure 4. Contents of the four Fe₂O₃ phases calculated by Rietveld analyses for the samples obtained using Fe(C₁₀H₉CHO) as the precursor (2-*X*, X = 1000-1300).

24 ± 14 nm (2-1150), 52 ± 22 nm (2-1250), and 135 ± 84 nm (2-1300). The XRD results indicated that the crystal structures of Fe₂O₃ anoparticles change in the order γ -Fe₂O₃ $\rightarrow \varepsilon$ -Fe₂O₃ $\rightarrow \beta$ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ as the heating temperature and particle size increase (Figure S5 in the SI). The threshold sizes of the phase transformations were estimated to have the following values: $\gamma \rightarrow \varepsilon$ at 7 nm, $\varepsilon \rightarrow \beta$ at 35 nm, and

Figure 5. Representation of *G* vs *d* curves for the four Fe₂O₃ phases under the conditions $G_B(\gamma) > G_B(\varepsilon) > G_B(\beta) > G_B(\alpha)$ and $G_S(\gamma) < G_S(\varepsilon) < G_S(\beta) < G_S(\alpha)$. Gray, blue, green, and red lines represent the *G* values of γ -, ε -, β -, and α -Fe₂O₃, respectively. Thick solid lines indicate the most stable Fe₂O₃ phases over the corresponding size ranges.

 $\beta \rightarrow \alpha$ at 80 nm. The magnetic properties of the sample series 2 are almost the same as those for series 1 (Figure S6 in the SI).

Thermodynamic Interpretation. The phase transformations among the four Fe₂O₃ phases ($\gamma \rightarrow \varepsilon \rightarrow \beta \rightarrow \alpha$) were observed for the first time in the present study, although the phase transformations between two Fe₂O₃ phases ($\beta \rightarrow$ α)^{18–20} and among three Fe₂O₃ phases ($\gamma \rightarrow \varepsilon \rightarrow \alpha$) were reported previously.^{29,30} The observed phase transformations for the four Fe₂O₃ phases, $\gamma \rightarrow \varepsilon \rightarrow \beta \rightarrow \alpha$, are due to the surface (or interface) energy contribution to the free energy for nanoparticles inside of the mesoporous silica. The free energy of a nanoparticle is $G(i) = G_{\rm B}(i) + (6V_{\rm m}/d)G_{\rm S}(i)$, where $G_{\rm B}$ is the free energy in the bulk, $G_{\rm S}$ is the surface energy, $V_{\rm m}$ is the molar volume, d is the diameter of the nanoparticle, and *i* represents the type of phase.^{9,36–38} When the $G_{\rm B}$ and $G_{\rm S}$ values for the four Fe₂O₃ phases satisfy the conditions (i) $G_{\rm B}(\gamma) > G_{\rm B}(\varepsilon) > G_{\rm B}(\beta) > G_{\rm B}(\alpha)$ and (ii) $G_{\rm S}(\gamma)$ $\langle G_{\rm S}(\varepsilon) \rangle \langle G_{\rm S}(\beta) \rangle \langle G_{\rm S}(\alpha)$, the *G*-versus-*d* curves should appear as shown in Figure 5. This figure indicates that the $\gamma \rightarrow \varepsilon \rightarrow \varepsilon$ $\beta \rightarrow \alpha$ phase transformation can be explained by the increasing d value. As for the formation of γ -Fe₂O₃ of the initial phase, divalent iron ion is known to help the formation of γ -Fe₂O₃,²⁹ and hence, a divalent iron ion may contribute to the generation of the γ -Fe₂O₃ nanoparticles.

Conclusion

The present study has presented the first systematic synthesis to produce all four Fe₂O₃ phases (γ -, ε -, β -, and α -Fe₂O₃) and reported that the particle size determines the stable phase. The threshold sizes between these phases in spherical Fe₂O₃ nanoparticles prepared from FeSO₄ precursor are as follows: $\gamma \rightarrow \varepsilon$, 8 nm; $\varepsilon \rightarrow \beta$, 30 nm; $\beta \rightarrow \alpha$, 50 nm.

- (37) Wen, H. L.; Chen, Y. Y.; Yen, F. S.; Huang, C. H. Nanostruct. Mater. 1999, 11, 89.
- (38) Zhang, H.; Banfield, J. F. J. Mater. Chem. 1998, 8, 2073.

⁽³⁶⁾ McHale, J. M.; Auroux, A.; Perrotta, A. J.; Navrotsky, A. Science 1997, 277, 788.

Acknowledgment. The present research was supported in part by a Grant-in-Aid for Young Scientists (S) from JSPS, a grant for the Global COE Program "Chemistry Innovation through Cooperation of Science and Engineering", the Photon Frontier Network Program from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, the Okawa Foundation, and Shorai Foundation for Science and Technology. A part of the present research was conducted at the Center for ARTICLES

Nano Lithography & Analysis of the University of Tokyo, supported by MEXT of Japan.

Supporting Information Available: TEM images, XRD patterns, and magnetic properties of Fe_2O_3 nanoparticles. This material is available free of charge via the Internet at http://pubs.acs.org.

JA9046069